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Abstract. Motion imagery is a concept that has been widely researched
for its application in EEG-controlled Brain-Computer Interfaces (BCI).
These interfaces offer several applications in rehabilitation. From diseases
like amyotrophic lateral sclerosis (ALS) to brain trauma. Along differ-
ent researchers, there are several techniques for selecting the electrode
channels for the motion imagery BCI. However, little effort has been
put into figuring out what is the better approach for motion imagery
channel selection. This paper aims to evaluate the accuracy of princi-
pal component analysis (PCA) and sequential selection algorithms for
two different deep learning architectures, multiple-layer perceptron neu-
ral network (MLPNN) and convolutional neural network (CNN). The
evaluation is unique in its aim to evaluate also the channels most com-
monly opted for, and consider the possibility of a global channel set for
different architectures.

Keywords: Channel Selection, EEG, Motor Imagery, Deep Learning,
Brain-Computer Interface.

1 Introduction

Motion imagery (MI) is a mental process that consists of a subject imagining
a movement without executing said movement [1, 2]. This mental process ac-
tivates the primary motor cortex and the additional motor areas in the same
manner as real movement, and it can be analyzed by electroencephalography
(EEG) recordings [3, 4]. This type of EEG signal has been widely researched for
its application in brain-computer interfaces (BCI). BCIs are systems that al-
low direct communication between a subject and their environment through the
use of brain signals, which includes MI-based EEG signals [5]. BCIs typically
consist of four phases which are signal acquisition, feature extraction, feature
classification, and device control interface [6]. The recent development of deep
learning (DL) has allowed an increase in performance in MI classification, as
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they hold the capacity of adapting non-linear and non-stationary signals and
extracting feature information automatically [6, 7]. MLP are the most common
feed-forward neural networks. This is because they are fast, easy to implement
and do not require training sets that are too big [8]. The structure of this ar-
chitecture consists of three types of layers: An input layer, an output layer, and
multiple hidden layers [9]. The hidden layers receive data from the previous layer
and conduct a nonlinear or linear activation function on the weighted sum of all
inputs from the previous layer. CNN architectures have been widely used for
MI classification purposes for their ability to learn features from a local recep-
tive field, which allows them to classify complex EEG classification tasks [10].
One important aspect of task classification of MI is channel selection, that is,
what number of electrode channels and which channels may yield better results
from the classification. Regarding the number of channels, an increase in the
number might result in higher accuracy, but the probability of electrode-related
error increases [11]. This is why it is important to consider an approach to se-
lect optimal channels and channel sets based on the requirements of the BCI.
Another aspect to take into consideration is electrode placement, as the differ-
ent electrode areas are related to different functions [12, 13]. EEG experiments
on MI classification are usually conducted using the 10-20 system [14]. There
are different approaches when it comes to channel selection methods. These can
be separated into filtering techniques, wrapper techniques, hybrid techniques,
and embedded techniques [15]. Filtering techniques include correlation criteria
[16], mutual information [17], chi-squared [18]. Wrapper techniques include se-
quential selection, examples being sequential feature selection (SFS) [19] and
Plus-L-Minus-r search method [20], as well as heuristic search algorithms. This
paper focuses on the evaluation of a sequential selection algorithm in compari-
son with a PCA approach. It aims to find commonalities in the optimal channel
sets, for both channel selection methods and examine whether or not this can
be significant enough to consider a global channel set for all subjects in order to
avoid the use of channel selection methods and reduce the number of electrode
channels used during experimentation. In addition, it aims to conduct compar-
isons in accuracy for sequential selection algorithm, and a PCA approach in a
raw 64-channel set, for MI classification.

2 Methods

To identify the algorithm with the higher accuracy for MI classification, a bi-
classification paradigm was chosen, and a public database was used to get train-
ing and testing sets. The algorithm was evaluated with two separate classifiers.

2.1 Referred dataset

The algorithms were evaluated on the public EEG dataset ‘EEG Motor Move-
ment/Imagery Dataset’ from Schalk et al [21, 22]. It consists of a set of 64-channel
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EEGs from 109 subjects recorded over 1500 recordings using the BCI2000 sys-
tem, being presented in EDF+ format. The montage for the 64 electrodes fol-
lowed the extended international 10-20 system (excluding Nz, F9, F10, Ft10,
A1, A2, Tp9, Tp10, P9, P10).

The data was sampled at 160 samples per second and included an extra an-
notation channel for segmentation. The subjects were recorded performing 3
repetitions of 4 tasks of motion and MI in 14 experimental runs (including 2
baseline runs, no task). The tasks were indicated by the appearance of a target
in a certain position on-screen:

1. Target appears on the left/right side of the screen, opening, and closing of
the respective fist.

2. Target appears on the left/right side of the screen, with imagery of the
opening and closing of the respective fist.

3. Target appears on the top/bottom of the screen, opening and closing of
either both fists (top) or both feet (bottom).

4. Target appears on the top/bottom of the screen, imagery of opening and
closing of either both fists (top) or both feet (bottom).

From the over 1500 recordings contained in the dataset, only 327 were imple-
mented to reduce the problem to a bi-class evaluation. Task 2, which is the
imaginary opening and closing of the left/right fist, was chosen for training and
evaluating the classification models and channel selection algorithms.

2.2 Pre-processing

An analysis was conducted on the referred EEG database prior to the imple-
mentation of channel selection and classification. A frecuential and ERD/ERS
analisys was made to verify that the MI de-sincronization was present in the
database. The first part of Figure 1 and Figure 2 shows the pre-processing stage.
First, a fourth-order bandpass butterworth filter was applied to the data. The
data was filtered between 8 and 33 Hz, aiming to keep only β and µ bands, as
they are most significant for MI classification [23].

Once the data is filtered, segmentation occurs extracting the data segments using
information contained in the annotations channel. MI events are encoded in the
annotation in the three following labels [21, 22]:

– T0, corresponds to rest

– T1, correspond to onset of motion in left fist

– T2, corresponds to onset of motion in right fist

Normalization of the events is performed by a min-max normalization, which is
implemented to transform the data to fit the range (0, 1) [24].
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2.3 Sequential selection algorithm

The sequential channel selection method is based on the algorithm published
by Mawata-Velu et al [13]. This algorithm operates on discriminating the active
from inactive electrode channels for classification based on accuracy rating, as
it can be seen in Figure 1 and Figure 2, for MLP and CNN architectures respec-
tively. It first processes every single channel independently from one another
through the classifier, generating a pool with the highest accuracy channels in
the data-set. Next, it proceeds to conduct combinations with the obtained pool
to generate a set of n electrodes, which runs through the classifier to obtain the
highest accuracy set. Each channel set is used as a reference for the next one,
which means combinations for a channel set of n channels will be made using
the results from the previous iteration of n − 1 channels. For the processing of
each channel or channel sets, the splitting of data following an 80-20 rule for
training-testing is done, and the data is sent to the classifier. The final shape
of the input matrix given to the classifier for training/testing is of (x, n, 113),
where x is the number of events in the training/testing set, n is the number of
channels, and 113 is the number of samples in the event. The first classifier

Fig. 1: Overview of the sequential selection algorithm on a MLP classifier.

architecture for the sequential selection algorithm is an MLP. The structure for
this classifier can be observed in Table 1.

A CNN architecture is also considered for evaluating the algorithms. The struc-
ture used for the implementation of the CNN classifier can be observed in Table
2.
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Fig. 2: Overview of the sequential selection algorithm on a CNN classifier.

Table 1: Summary and number of the parameters implemented in the MLP
classification model.

Layer (type) Output Shape Parameters

Input Layer (None, k, 113, 3) 0
Flatten (None, 113) 0
Dense (None, 25) 2850
Dense (None, 25) 650
Dense (None, 25) 650
Dense (None, 2) 52
Softmax (None, 2) 0

Table 2: Summary and number of the parameters implemented in the CNN
classification model.

Layer (Type) Output Shape Parameters

Input Layer (None, k, 113, 3) 0
Conv2D (None, k, 113, 3) 6
Conv2D (None, k, 113, 3) 12
Flatten (None, 339) 0
Dense (None, 25) 8500
Dense (None, 25) 650
Dense (None, 25) 650
Dense (None, 2) 52
Softmax (None, 2) 0
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Both classifiers were trained using an Adam optimizer, using accuracy as the
only metric, for 10 epochs for each channel or channel set.

2.4 PCA approach

PCA is a well-known technique for multivariate analysis used extensively in EEG
and BCI applications. In neural computing applications, it aims to either reduce
the data size in the form of feature selection, extracting the most significant
components for classification, or using the significance acquired from said com-
ponents to select the most significant channels. To accomplish this, the data for
each subject X is arranged into a two-dimensional matrix n × p of n channels
and p data samples, which for this case is 113. Once the data is arranged, the
mean uj of each row n is subtracted B as is shown in equations (1).

uj =
1
n

∑n
i=1 Xij ,

B = X − uT .
(1)

The next step to finding the PC of our data is to obtain the covariance of the
matrix B, shown in equation (2).

C =
1

n− 1
BBT . (2)

Where C is the covariance matrix, then the equation in (3) is used to get the
PCA elements.

D = V −1CV,
Dkk = dk, k = 1 . . . n.

(3)

Where V is the matrix of eigenvectors of C arranged on n columns, V T is the
matrix of principal components (PC) of the original matrix X, D is a diagonal
matrix with the values dk of the variance of X on the PC [25].

Once the PC matrix is obtained from the data, one can use this to obtain the
most significant channels from the signal. Method B4 [26, 27] was opted for our
PCA channel selection. It consists of selecting a number p which will be equal
to the number of components accounting for a certain proportion, λ0, of the
total variance. One variable is related to each component, the variable which
has the largest coefficient in the component. Then all variables p are selected,
and variables K − p are rejected. A slight modification to the method is done,
where instead the number of channels for a variance threshold, the number of
maximum channels to be selected will be set to p = 6, since it is the maximum
channel set implemented to the sequential channel algorithm approach.[28] This
method was programmed in python using the PCA function from the Scikit-learn
library. The function uses the Probabilistic PCA approach.
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3 Results

For the evaluation of channel methods, only accuracy was used as a evaluation
metric, as it tends to be the most widely used metric in relation to MI classifica-
tion. Moreover, as the intent of this evaluation is to find out which channels are
preferred by the algorithms, channels are sorted by the instances in which they
were selected, and the accuracy for each instance in which the channel appears
is averaged.

3.1 Sequential selection evaluation

For the sequential selection algorithm, sorted lists of the top channels for each
subject were obtained. Afterwards, the data was sorted first based on the in-
stances in which the channel sets repeated, and second on the accuracy of the
channel selection. The preferred channels by the algorithm for 1 channel can be
seen in Table 3. In addition to this, the learning curves of MLP and CNN as a
function of the number of channels used for the classifier can be seen in Figure
3. The preference of the channel selector can be seen spatially in Figure 4, where
the color is dependant on the instances that each channel is selected.

Table 3: Channels most commonly selected by the sequential selection algorithm
for 1 channel.

MLP CNN
Channel Instances Percentage Mean

Accuracy
Channel Instances Percentage Mean

Accuracy
FC6 33 3.11% 70.37% FC5 37 3.49% 77.78%
FC4 30 2.83% 79.63% FCz 34 3.21% 79.37%
FCz 30 2.83% 76.39% FC1 29 2.74% 83.33%
FC3 28 2.64% 75.00% FC6 29 2.74% 66.67%
FC5 27 2.55% 73.33% FC4 28 2.64% 68.25%
FT8 27 2.55% 68.52% C3 26 2.45% 74.07%
FC1 26 2.45% 75.56% C5 26 2.45% 71.43%
CP6 26 2.45% 73.61% FC3 25 2.36% 74.07%
FC2 26 2.45% 69.84% FC2 24 2.26% 73.02%
C5 25 2.36% 68.52% C6 24 2.26% 71.11%
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(a) MLP Classifier (b) CNN Classifier

Fig. 3: Learning curves of the classifiers through number of channels per subject.
Line in bold reflects the mean of each number of channels. Individual results are
the ones in grey.

(a) MLP Classifier (b) CNN Classifier

Fig. 4: Spatial maps of the number of instances in which channels appear as most
significant in the dataset according to the sequential selection algorithm.

3.2 PCA evaluation

In the case of the PCA approach to channel selection, only one list of the 10
most significant channels was obtained for each subject. These channels were
arranged into 1, 3, and 6 channel sets and the lists were sorted first based on the
instances in which the channel sets repeated, and second on the accuracy of the
channel selection. The preferred channels by the algorithm for 1 channel can be
seen in Table 4. In addition to this, the learning curves of MLP and CNN as a
function of the number of channels used for the classifier can be seen in Figure
5.
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Table 4: Channels most commonly selected by the PCA algorithm for 1 channel.
MLP CNN

Channel Instances Percentage Mean
Accuracy

Channel Instances Percentage Mean
Accuracy

T9 28 2.64% 33.33% T9 28 2.64% 22.22%
C6 11 1.04% 33.33% C6 11 1.04% 77.78%
AF8 6 0.57% 55.56% T8 6 0.57% 77.78%
T8 6 0.57% 55.56% T10 6 0.57% 55.56%
T10 6 0.57% 22.22% AF8 6 0.57% 22.22%
TP7 5 0.47% 66.67% TP7 5 0.47% 44.44%
TP8 4 0.38% 44.44% AF7 4 0.38% 66.67%
P7 4 0.38% 11.11% F7 4 0.38% 44.44%
F7 4 0.38% 11.11% TP8 4 0.38% 33.33%
AF7 4 0.38% 11.11% P7 4 0.38% 22.22%

(a) MLP Classifier (b) CNN Classifier

Fig. 5: Learning curve of the classifiers through number of channels per subject.
Line in bold reflects the mean of each number of channels.

4 Discussion and Conclusions

We can observe that at only one channel there seems to be a difference in ac-
curacy between MLP and CNN classifiers for the sequential selection algorithm,
where both accuracies are slightly above the 70% threshold (see Figure 3). For
PCA, the difference is much more noticeable, with MLP having a close to 20%
accuracy, while the one in the CNN classifier is close to 60%. As the channel
selection algorithms begin to generate channel sets with a higher number of
channels, there are notable differences between the classifiers. In PCA, MLP
increases significantly, reaching almost 80% accuracy on average at 6 channels,
as can be seen in Figure 5. However, in the sequential selection, although there
is also an increase in accuracy, it seems to be of a lower slope, even decreasing
after finding an above 80% peak in the 5-channel set. In the case of the CNN
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classifier, both for PCA and sequential selection algorithms, accuracy decreases
as the number of channels increase. In the case of sequential selection, it seems
to slightly increase from 1 to 2 channels, only to then decrease until the lowest
point at 5 channel set, around 35%, only to slightly increase at the 6-channel
set. Comparing PCA to the sequential selection algorithm, a clear advantage for
the algorithm over sequential selection is that it requires only one iteration per
subject to compute any number of channels, while sequential selection requires
the same number of iterations as the number of channels in a channel set. PCA
shows low accuracy for one channel set, though it seems to increase with a num-
ber of channels, as the two most preferred channels have accuracies of 33.33%
(Table 4), and a mean of slightly more than 20% (Figure 5). On the other hand,
sequential selection holds accuracies of 70.37% and 79.63% for the two most
preferred channels (Table 3), and a mean of more than 70% (Figure 3). Overall,
as the number of channels per set increases, sequential selection seems to have
higher accuracy than PCA (Figure 5 and Figure 3). However, the sequential
selection CNN model implented in our work did not reach the same accuracies
as other works, which surpassed the 90% barrier [13].

Analyzing the sequential selection algorithm preferred channels, the ones that
have better results in accuracy correspond with the literature data [12], for the
frontal-central (FC), and frontal-temporal (FT) channels, as well as central-
parietal (CP) and central (C) channels, although they vary between MLP and
CNN classifiers (see Figure 3). These are significant since they spatially cover
the precentral gyrus of the brain, which is the area responsible for the genera-
tion of neural impulses for muscle control. The 10 most preferred channels hold
together 26.22% of all channel selections for MLP, and 26.6% for CNN, across
the 106 subjects. As seen in the spatial maps of the number of channel selections
(Figure 4), the sequential selection algorithm tends to indicate that channels
located in the most anterior portion of the precentral gyrus are preferred for
classification in both MLP and CNN classifiers, with a tendency towards the left
channels. However, the PCA algorithm yields a different set of channels as most
preferred across the data set. Table 4, shows a preference of temporal (T9, T8,
T10), temporal-parietal (TP7, TP8), and frontal (AF8, AF7) channels, although
they also present frontal (F7), central (C6), and parietal (P7) channels. These
related to auditory perception and high-level visual processing, not necessarily
movement-related tasks. The discrepancy is related to the method of discrim-
ination in the selection methods, as sequential selection chooses channels that
yield the most accurate, while PCA finds the channels which explain the highest
variance in the signal. The 10 most preferred channels hold 7.38% of all channel
selections across the 106 subjects for both classifiers. Due to the discrepancy
between both approaches, having a mostly frontal-central preference for sequen-
tial selection and temporal preference for PCA, it is not possible to state that
a global, optimal channel set for MI classification exists. However, based on the
information gathered, the frontal-central channels shown by the sequential se-
lection method seem to be the most accurate ones, as well as the most selected
group, holding a 26.22%
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This research aimed to find a global optimal channel set to simplify the process
of channel selection. It evaluated the performances of PCA and sequential selec-
tion methods by comparing their accuracies, as well as finding recurrent channel
choices in both methods. These channel selection approaches were evaluated us-
ing a 106-subject database, with a left-right fist opening-closing paradigm. MLP
and CNN architectures were implemented as the classifiers, and the resulting
channel selections were sorted by the instances in which they were repeated
across subjects and the accuracies they yielded. The results present different
preferences in channels between channel selection methods, as PCA focused on
channels in the temporal area while sequential selection opted for channels in
the frontal-central area. Overall, sequential selection yielded a better mean ac-
curacy in both classifiers and through different channel sets, with the exception
of the 6-channel set for the MLP classifier. Based on the previously mentioned it
cannot be concluded that there is a global channel set between channel selection
methods, the best channels to be worked based on accuracy rely on the channel
selection algorithm.
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